

Unit 1 Introduction to Drafting & Design

Essential Question

What is the role of drafting and design in engineering, architecture, and manufacturing?

Unit Summary

Introduction to the importance, history, and applications of drafting and design, including career pathways.

Guiding Questions

Content

- What are the basic drafting tools and their functions?
- How does drafting relate to different industries?
- What are the key principles of technical drawing?

Process

- How do we set up and interpret a technical drawing?
- How do professionals maintain accuracy in drafting?
- What are common drafting conventions?

- Why is drafting important in today's industries?
- How can accuracy in drafting impact real-world projects?
- What skills do I need to improve?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 2 Technical Drawing Fundamentals

Essential Question

What are the fundamental principles of technical drawing?

Unit Summary

Focuses on line types, sketching techniques, geometric construction, and lettering.

Guiding Questions

Content

- What are the different line types and their meanings?
- How do geometric constructions support drafting?
- Why is proper lettering important?

Process

- How do we create different types of lines accurately?
- How can freehand sketching improve CAD drafting?
- How do we use drafting tools properly?

- What challenges do I face in technical sketching?
- How does technical drawing prepare me for CAD?
- How does precision affect my work?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 3 Orthographic Projection & Multiview Drawings

Essential Question

How do orthographic projections represent 3D objects accurately?

Unit Summary

Covers multiview drawings, projection methods, and visualization skills.

Guiding Questions

Content

- What are the standard views in an orthographic projection?
- How do hidden and centerlines improve clarity?
- What are the rules of projection?

Process

- How do we create a three-view drawing?
- How do we ensure accuracy in dimensioning?
- What techniques improve visualization of 3D objects?

- Why is orthographic projection necessary?
- How does my understanding of 3D space influence my drawings?
- What areas need improvement?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 4 Introduction to CAD (2D Drafting)

Essential Question

How does computer-aided design improve efficiency in drafting?

Unit Summary

Introduction to CAD software, including commands, tools, and interface navigation.

Guiding Questions

Content

- What are the key features of CAD software?
- How do layers organize a drawing?
- What commands are essential for basic drafting?

Process

- How do we create and modify drawings in CAD?
- How do we apply proper scaling and limits?
- What are the best practices for file management?

- How does CAD differ from manual drafting?
- What advantages does CAD provide?
- How can I improve my efficiency in CAD?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 5 Advanced 2D Drafting & Annotation

Essential Question

How do precision and annotation enhance technical drawings?

Unit Summary

Focuses on advanced 2D CAD techniques, dimensioning, text styles, and plot settings.

Guiding Questions

Content

- How do we apply dimensioning standards in CAD?
- What are common annotation practices?
- How does scaling affect output?

Process

- How do we use dimensioning tools effectively?
- How do we ensure proper line weights and text alignment?
- What are the steps to setting up a title block?

- How does annotation improve communication?
- What challenges do I face in dimensioning?
- How can I make my drawings more professional?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 6

Project: 2D Drafting Application

Essential Question

How do we apply 2D drafting skills to real-world projects?

Unit Summary

Students complete a detailed 2D drawing based on given specifications.

Guiding Questions

Content

- What are the requirements for a complete technical drawing?
- How do industry standards apply to real-world designs?
- What are common mistakes in 2D drafting?

Process

- How do we plan and execute a complex drawing?
- How do we verify accuracy in measurements?
- What tools ensure consistency in drafting?

- How did my drafting skills improve?
- What challenges did I overcome?
- How does this project prepare me for future work?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 7 Introduction to 3D Modeling

Essential Question

How does 3D modeling enhance design communication?

Unit Summary

Covers basic 3D CAD commands, extrusions, and parametric modeling.

Guiding Questions

Content

- What are the fundamental principles of 3D modeling?
- How does parametric design improve workflow?
- What are common file formats for 3D models?

Process

- How do we create a 3D part from a 2D sketch?
- How do we apply constraints in modeling?
- What are best practices for organizing model files?

- How does 3D modeling differ from 2D drafting?
- What challenges do I face in 3D design?
- How can I improve my efficiency?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 8 Advanced 3D Modeling Techniques

Essential Question

How do advanced modeling tools improve product design?

Unit Summary

Covers assemblies, sweeps, lofts, and parametric features.

Guiding Questions

Content

- What are the advantages of parametric assemblies?
- How do sweeps and lofts enhance design capabilities?
- What are best practices for constraints?

Process

- How do we create and manage assemblies?
- How do advanced features improve model efficiency?
- What strategies optimize large models?

- How has my understanding of CAD improved?
- What advanced tools am I most comfortable with?
- What areas still need development?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 9 Dimensioning & Tolerancing

SE VALLERY SOHOOS

Essential Question

Why is precision critical in manufacturing and engineering?

Unit Summary

Covers GD&T principles, tolerancing, and industry standards.

Guiding Questions

Content

- What are the types of tolerances?
- How does GD&T improve design accuracy?
- Why do manufacturing processes require specific tolerances?

Process

- How do we apply tolerances in CAD?
- How do GD&T symbols communicate design intent?
- What tools help analyze fit and function?

- How does tolerance affect part production?
- What challenges do I face in applying GD&T?
- How can I improve my precision?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 10 Rendering & Visualization

SCHOOLS

Essential Question

How does rendering improve design presentation?

Unit Summary

Covers material applications, lighting, and photorealistic rendering.

Guiding Questions

Content

- What are the key elements of a high-quality render?
- How does lighting affect visualization?
- What software tools enhance rendering?

Process

- How do we apply materials in CAD?
- How do we adjust camera settings for better presentation?
- What are best practices for exporting renders?

- How does visualization enhance client communication?
- What improvements can I make in my rendering workflow?
- What rendering techniques interest me most?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 11 Introduction to CAM & Digital Fabrication

Essential Question

How do CAD models integrate with CNC and digital fabrication?

Unit Summary

Covers CNC programming, laser cutting, and 3D printing basics.

Guiding Questions

Content

- How do CAD models translate into machine instructions?
- What are common digital fabrication tools?
- How does G-code control CNC machines?

Process

- How do we prepare a model for 3D printing?
- How do we generate toolpaths for CNC cutting?
- What factors affect fabrication success?

- How does CAM impact the design process?
- What challenges arise in digital fabrication?
- What areas do I need to explore further?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.

Unit 12

Capstone Project: Design & Prototyping

Essential Question

How do we apply CAD skills to solve real-world problems?

Unit Summary

Students complete an industry-related design challenge from concept to prototype.

Guiding Questions

Content

- What are the steps of product development?
- How do industry standards apply?
- What role does prototyping play in design?

Process

- How do we iterate and refine designs?
- How do we validate a prototype's effectiveness?
- What strategies ensure project success?

- How has my CAD proficiency evolved?
- What was the most valuable lesson?
- How can I apply these skills in future careers?

- 1.1 Identify and demonstrate the use of CAD commands and system peripherals.
- 1.2 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.3 Demonstrate proficiency in setting, turning on and turning off layers.
- 1.4 Place text on a drawing and be able to change to different font styles, sizes, and angles.
- 1.5 Be proficient in the use of printer/plotter operations.
- 1.6 Demonstrate ability to place text on a drawing and change to different font styles, sizes, and angles.
- 1.7 Demonstrate ability to dimension drawings on the CAD system.
- 1.8 Construct drawings using straight line, circle, and hidden line statements, etc.
- 1.9 Set grid and snap specifications.
- 1.10 Define and use commands to modify a drawing.
- 1.11 Use symbols (from a symbol library) in a drawing.

- 1.1 Create standard drawings and templates.
- 1.2 Demonstrate the ability to load, store files, and transport files via Internet.
- 1.3 Construct isometric and 3D drawings.
- 1.4 Use CAD drawings to produce a high or low-fidelity prototype or model.
- 1.1.1 Demonstrate proficiency in setting limits and scale on the CAD system.
- 1.1.2 Demonstrate the ability to dimension drawings on the CAD system.